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Comment on “Phase ordering in chaotic map lattices with conserved dynamics”
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Angelini, Pellicoro, and StramaglifPhys. Rev. E60, R5021(1999] claim that the phase ordering of
two-dimensional systems of sequentially updated chaotic maps with conserved “order parameter” does not
belong, for large regions of parameter space, to the expected universality class. We show here that these results
are due to a slow crossover and that a careful treatment of the data yields normal dynamical scaling. Moreover,
we construct better models, i.e., synchronously updated coupled map lattices, which are exempt from these
crossover effects, and allow for precise estimates of persistence exponents in this case.

PACS numbses): 05.45.Ra, 05.70.Ln, 05.56q, 82.20.Mj

I. INTRODUCTION Il. REVISITING THE APS RESULTS

A. The hybrid map lattices of APS

The dynamical phenomenon of domain growth occurs in - The |attices of maps introduced by APS are hybrid in
many different physical contexts. Once a fairly well- several ways: a given local méajs first applied to all sites;
established subjedtl], it has been recently the center of of the lattice (a deterministic and synchronous operaljon
renewed interest for several distinct reasons: one is the aghen pairs of nearest neighbors are sequentially and regularly
vent of new quantifiers of the associated dynamical scalingisited and swapped probabilisticallfThe regularity of the
regimes, such as first-passage or persistence exponents, isueeps of the lattice is at the origin of the anisotropy of the
the rate of algebraic decay of the probability for a givendomains in Fig. 1 of5].) Furthermore, such systems are not
point in space to have remained in the same phase sinc¢eoupled” maps as in usual CMLs, since the values taken
some initial time[2]. Another reason is the natural question by the sites are not influenced by the swépgy are always
of the extent of known “universality classes” to new types taken according to the invariant measure of the local)map
of systems, e.g., spatiotemporally chaotic ones. These systems are designed to mimick Ising systems

In this context, the recent study of the ordering propertiegWith fluctuating couplings corresponding to the “spins”
of chaotic coupled map latticgCMLs) possessing several oi=Sgn;). The local mad has not much importance, and
symmetric phases in competition brought up some intriguingt iS convenient to choose, followir{@,3], an odd map of the
results[3]: in the simple case of two competing phases and a — 1,1 interval with two symmetric attractors. The energy
nonconserved order parameter, the “normal” growth law©f One configuration is given b= —2 x;x; where the
L(t)~t with z=2, whereL(t) is the single length scale SUM IS Over nearest-neighbor pairs. The exchange probability

characterizing the coarsening pattern, was observed but witrl‘?adspswapz 1/[1+exp(BAE)] where§ is the inverse tem-
some exponent=2 continuously varying with parameters. perature and&_E !s_the energ_y_cha.nge of the swap. 'I_'he_zero-
. temperature limit is deterministic: swaps are effective if and

However, this was later showd] to be only a(slow) tran- only if they decrease the energy

sient behavior due to the nontrivial effect of space- '

discretization in these deterministic systems. For larger lat-

tices and longer times than those considere@3in L was

shown to behave normally when plotted again';’fézt We have performed numerical simulations of the APS
In a recent paper, Angelini, Pellicoro, and StramagliaSystem at zero temperature with the piecewise linear local

(APS) [5], motivated by the above study of nonconservedmap used irf3].

order parameter CMLs, presented a class of sequentially up-

B. Domain growth is normal

dated lattices of chaotic maps designed to investigate the X ff Xel-13.13
case where the order parameter is locally conserved. In this f(x)=9 2u3—uX if Xe[1/3,1] (1)
case,L is also expected to grow algebraically with time, but —2ul3—uX if Xe[—1,—-1/3],

with z=3 [1,6]. APS claim, however, that larger exponents

are commonly found. Here we show that APS were misledyith .= 1.9. Coarsening occurs, with, again, a strong anisot-
by their treatment of data and that in fact the normal ( ropy due to the mode of update. The growth_otlefined as
=3) growth law is observed in all cases. We argue, morethe width at midheight of the two-point autocorrelation func-
over, that fully deterministic, synchronously updated,tion, is slow at short times, but then reaches the expedtéd
coupled map lattices that conserve the order parameter cdrehavior[Fig. 1(a)], contrary to the claims of APS. The
be easily constructed following the ideas of Oono and Purshort-time behavior may be mistaken for anomalously slow
[7], and we show that these systems behave very smoothlplgebraic growth(with an exponent close to the valuez1/
enabling the precise measurement of persistence exponent).07 reported by APSwhen logarithmic scales are used,
in this context. but a closer inspection shows a systematic increase of the
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(b) Ill. WELL-BEHAVED DETERMINISTIC MODELS

In(L)
A. Oono-Puri style CMLs
Deterministic models for phase ordering of conserved
systems were introduced by Oono and Hufli Dynamical
scaling was observed to hold for these CMLs, with a growth
law compatible with the expected=3. We now present
similar models that, in addition, can be constructed for any
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0000 local map.
0 ¢ % w0 ~025 s - : A usual CML, such as that studied [8,4] for the non-
o * 100 g In(z) conserved order-parameter case, can be written

FIG. 1. Domain growth in the APS system with the local map (i1 o ¢ ¢
(1) at zero temperature3= ). Lattice of size 1024with periodic Xi =}'(Xi)=(1—Ng)f(xi)+gZ f(xp), 2
boundary conditions. Solid lined: defined as the width at mid- o
height of the two-paint correlation function estimated alongxhe \yhereg is the coupling strength\/ is the number of neigh-
axis of the lattice. Dashed lines: same but alongytexis of the  [ors in the chosen coupling range, and the sum is over these
lattice. (a) L vst*3; inset: local slopegb) In(L) vs In(t); inset: local neighbors.

exponent. Following [7], a CML conserving exactly the continuous

local exponenfFig. 1(b)]. As a matter of fact, the system is local field can easily be constructed as

so anisotropic that domains elongate in tifrég. 1(a)]. This 1

is qlue to our (_:h0|ce_ of updatingwise pairs beforg-wise _ Xit+1:]_—(xit)_ NZ []—"(x})—x}], (3)
pairs. Alternating this order would presumably suppress this j~i

effect.

Runs of the same system at finite temperatures indicatéhere the last term corresponds to the extra Laplacian in the
=3 behavior occurs sooner. We are confident that similaX i obvious. On the other hand, strictly speaking, the dis-
APS. As a conclusion, Fig. 3 §5] has to be replaced by the Slightly, because the last term in E§) may change the sign
variation of theprefactorof the L=t¥3 law, similarly to the ~ Of sites situated in domain walls. -
final conclusions of[4] for the nonconserved order-  The synchronous mode of update prevents excesseve

parameter case. other than lattice-derivate¢dnisotropy. The above structure
ensures that “true” zero-temperature regimes are observed if
C. Persistence scaling is hard to measure the local map possesses two disjoint attractors. Changing the

nature of these attractotfixed points, limit cycles, chaotic
setg, one can study competition between phases of different
natures.

The persistence probability p(t)=Prodo;(t")
=0i(ty), V t' €[tg,t]} is usually observed to decay alge-
braically with time[ p~ (t/tg) ~’] in systems with algebraic
growth laws. But persistence scaling for conserved order-
parameter systems is notoriously difficult to obse®k An
additional difficulty lies in the fact that the available models We now present results obtained on a particular case of
only show coarsening at finite temperatures, so that one habe models defined above. More comprehensive results will
to resort to block-scaling of persistence. This is also the caske reported elsewhefé1]. For simplicity reasons, we again
of APS systemseven at zero temperatursince the chaotic choose the map given by E€l). For “extra smoothness,”
fluctuations of the “couplings” amount to a finite tempera- the Moore neighborhood on the square lattidé<8 neigh-
ture. This, by the way, is the reason why APS systemdors of equal weightwas used.
coarsen in this case. As in [3,4], domain walls are strictly pinned for smayl

Needless to say, the estimates of persistence exponerfter too strong coupling, on the other hand, antiferromagneti-
presented if5] are then highly unreliable, if only because of clike phases appear. There is, however, an intermediate
the slow crossover for the growth law af Ideally, since range ofg values for which domain growth proceeds forever
persistence is a complex quantity involving all times sincebetween two weakly chaotic phases. The expezte@ law
the reference timég,, one should in principle choosgin the is then easily observed even at short times and in log-log
asymptotic scaling regime and simulate the system up tscaleqFig. 2(a)].
timest>t,. Given the typical values of the crossover times The above CMLs reveal their strongest advantage when
(Fig. 1), this is hardly possible. Another difficulty for the persistence scaling is considered. As already noticed, they
APS systems is the possible influence of their strong anisotshow normal coarsening with true zero temperature. This
ropy on the persistence exponehf10]. allows us to avoid studying block persistence scaling, a

Rather than trying to properly measure persistence scalingomewhat tedious task. Figurég® shows persistence decay
in APS systems, a possible but difficult task, we now turnfor different reference timeg,. Nice scaling is easily ob-
ourselves to truly deterministic models, i.e., regular coupledserved. This constitutes, to our knowledge, the first clean
map lattices, which are devoid of the drawbacks underlinegvidence of algebraic decay of persistence in a two-
above for APS systems. dimensional conserved order-parameter system. Our results

B. An example
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universality of the persistence exponent measured above,
alongside a similar study for the nonconserved order-
parameter case for which this issue is still unresoh&d2].

IV. CONCLUSION

In this Comment, we showed how APS were misled in
their interpretation of simulation data and that their conclu-
sions about possible nontrivial values of the dynamical ex-
ponentz in chaotic systems with conserved order parameter
dynamics do not hold. To a large extent, these systems can
be seen as too close to the Ising model with Kawasaki dy-

FIG. 2. Phase ordering and persistence scaling in a Oono-Pufamics, which is well known to be difficult to study numeri-

style CML. Lattice of size 8192with periodic boundary condi-
tions. (@) In(L) vs In(t); inset: local exponentThe slightly smaller

cally (althoughz= 3 scaling is now well documentdd3]).
We introduced a class of CMLs that are devoid of all the

values of 12 recorded can be shown to be due to space discretis"’broblems encountered in APS systems and that show normal

tion effects) (b) In(p) vs In(t) for various initial timest,. From
bottom to top:t,=0, 10, 14, and 16.

give an exponent=0.252), i.e., a value larger than that
observed for the nonconserved order parameter ¢ase

which =0.20-0.229,12)).

scaling already at early times. Moreover, these systems also
present nice scaling behavior for the persistence probability,
whereas similar investigations in APS systems are riddled
with problems. We showed unambiguously that two-

dimensional systems with conserved order-parameter domain
growth show an algebraic decay of persistence. Future work

The above CMLs constitute an excellent base for a reliwill try to assess the universality of both the so-called
able study of persistence scaling in conserved orderFisher-Huse exponent and the persistence expahensuch
parameter systems. Ongoing work is probing the degree afystems.
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