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Comment on ‘‘Phase ordering in chaotic map lattices with conserved dynamics’’
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~Received 2 March 2000!

Angelini, Pellicoro, and Stramaglia@Phys. Rev. E60, R5021 ~1999!# claim that the phase ordering of
two-dimensional systems of sequentially updated chaotic maps with conserved ‘‘order parameter’’ does not
belong, for large regions of parameter space, to the expected universality class. We show here that these results
are due to a slow crossover and that a careful treatment of the data yields normal dynamical scaling. Moreover,
we construct better models, i.e., synchronously updated coupled map lattices, which are exempt from these
crossover effects, and allow for precise estimates of persistence exponents in this case.

PACS number~s!: 05.45.Ra, 05.70.Ln, 05.50.1q, 82.20.Mj
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I. INTRODUCTION

The dynamical phenomenon of domain growth occurs
many different physical contexts. Once a fairly we
established subject@1#, it has been recently the center
renewed interest for several distinct reasons: one is the
vent of new quantifiers of the associated dynamical sca
regimes, such as first-passage or persistence exponents
the rate of algebraic decay of the probability for a giv
point in space to have remained in the same phase s
some initial time@2#. Another reason is the natural questio
of the extent of known ‘‘universality classes’’ to new type
of systems, e.g., spatiotemporally chaotic ones.

In this context, the recent study of the ordering propert
of chaotic coupled map lattices~CMLs! possessing severa
symmetric phases in competition brought up some intrigu
results@3#: in the simple case of two competing phases an
nonconserved order parameter, the ‘‘normal’’ growth la
L(t);t1/z with z52, whereL(t) is the single length scale
characterizing the coarsening pattern, was observed but
some exponentz>2 continuously varying with parameter
However, this was later shown@4# to be only a~slow! tran-
sient behavior due to the nontrivial effect of spac
discretization in these deterministic systems. For larger
tices and longer times than those considered in@3#, L was
shown to behave normally when plotted againstt1/2.

In a recent paper, Angelini, Pellicoro, and Stramag
~APS! @5#, motivated by the above study of nonconserv
order parameter CMLs, presented a class of sequentially
dated lattices of chaotic maps designed to investigate
case where the order parameter is locally conserved. In
case,L is also expected to grow algebraically with time, b
with z53 @1,6#. APS claim, however, that larger exponen
are commonly found. Here we show that APS were mis
by their treatment of data and that in fact the normalz
53) growth law is observed in all cases. We argue, mo
over, that fully deterministic, synchronously update
coupled map lattices that conserve the order parameter
be easily constructed following the ideas of Oono and P
@7#, and we show that these systems behave very smoo
enabling the precise measurement of persistence expon
in this context.
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n

d-
g
i.e.,

ce

s

g
a

ith

-
t-

d
p-
e
is

t

d

-
,
an
ri
ly,
nts

II. REVISITING THE APS RESULTS

A. The hybrid map lattices of APS

The lattices of maps introduced by APS are hybrid
several ways: a given local mapf is first applied to all sitesxi
of the lattice ~a deterministic and synchronous operatio!,
then pairs of nearest neighbors are sequentially and regu
visited and swapped probabilistically.~The regularity of the
sweeps of the lattice is at the origin of the anisotropy of
domains in Fig. 1 of@5#.! Furthermore, such systems are n
‘‘coupled’’ maps as in usual CMLs, since the values tak
by the sites are not influenced by the swaps~they are always
taken according to the invariant measure of the local ma!.

These systems are designed to mimick Ising syste
~with fluctuating couplings! corresponding to the ‘‘spins’’
s i5sgn(xi). The local mapf has not much importance, an
it is convenient to choose, following@8,3#, an odd map of the
@21,1# interval with two symmetric attractors. The energ
of one configuration is given byE52(^ i , j &xixj where the
sum is over nearest-neighbor pairs. The exchange probab
readsPswap51/@11exp(bDE)# whereb is the inverse tem-
perature andDE is the energy change of the swap. The ze
temperature limit is deterministic: swaps are effective if a
only if they decrease the energy.

B. Domain growth is normal

We have performed numerical simulations of the AP
system at zero temperature with the piecewise linear lo
map used in@3#.

f ~x!5H mX if XP@21/3,1/3#

2m/32mX if XP@1/3,1#

22m/32mX if XP@21,21/3#,

~1!

with m51.9. Coarsening occurs, with, again, a strong anis
ropy due to the mode of update. The growth ofL, defined as
the width at midheight of the two-point autocorrelation fun
tion, is slow at short times, but then reaches the expectedt1/3

behavior @Fig. 1~a!#, contrary to the claims of APS. Th
short-time behavior may be mistaken for anomalously sl
algebraic growth~with an exponent close to the value 1z
50.07 reported by APS! when logarithmic scales are use
but a closer inspection shows a systematic increase of
3004 ©2000 The American Physical Society
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PRE 62 3005COMMENTS
local exponent@Fig. 1~b!#. As a matter of fact, the system
so anisotropic that domains elongate in time@Fig. 1~a!#. This
is due to our choice of updatingx-wise pairs beforey-wise
pairs. Alternating this order would presumably suppress
effect.

Runs of the same system at finite temperatures indi
that domain growth is faster and that the crossover to thz
53 behavior occurs sooner. We are confident that sim
results hold for the complicated local map mostly used
APS. As a conclusion, Fig. 3 of@5# has to be replaced by th
variation of theprefactorof the L}t1/3 law, similarly to the
final conclusions of @4# for the nonconserved order
parameter case.

C. Persistence scaling is hard to measure

The persistence probability p(t)5Prob$s i(t8)
5s i(t0), ; t8P@ t0 ,t#% is usually observed to decay alg
braically with time@p;(t/t0)2u# in systems with algebraic
growth laws. But persistence scaling for conserved ord
parameter systems is notoriously difficult to observe@9#. An
additional difficulty lies in the fact that the available mode
only show coarsening at finite temperatures, so that one
to resort to block-scaling of persistence. This is also the c
of APS systems,even at zero temperature, since the chaotic
fluctuations of the ‘‘couplings’’ amount to a finite temper
ture. This, by the way, is the reason why APS syste
coarsen in this case.

Needless to say, the estimates of persistence expon
presented in@5# are then highly unreliable, if only because
the slow crossover for the growth law ofL. Ideally, since
persistence is a complex quantity involving all times sin
the reference timet0, one should in principle chooset0 in the
asymptotic scaling regime and simulate the system up
times t@t0. Given the typical values of the crossover tim
~Fig. 1!, this is hardly possible. Another difficulty for th
APS systems is the possible influence of their strong ani
ropy on the persistence exponentu @10#.

Rather than trying to properly measure persistence sca
in APS systems, a possible but difficult task, we now tu
ourselves to truly deterministic models, i.e., regular coup
map lattices, which are devoid of the drawbacks underlin
above for APS systems.

FIG. 1. Domain growth in the APS system with the local m
~1! at zero temperature (b5`). Lattice of size 10242 with periodic
boundary conditions. Solid lines:L defined as the width at mid
height of the two-point correlation function estimated along thx
axis of the lattice. Dashed lines: same but along they axis of the
lattice.~a! L vs t1/3; inset: local slopes.~b! ln(L) vs ln(t); inset: local
exponent.
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III. WELL-BEHAVED DETERMINISTIC MODELS

A. Oono-Puri style CMLs

Deterministic models for phase ordering of conserv
systems were introduced by Oono and Puri@7#. Dynamical
scaling was observed to hold for these CMLs, with a grow
law compatible with the expectedz53. We now present
similar models that, in addition, can be constructed for a
local map.

A usual CML, such as that studied in@3,4# for the non-
conserved order-parameter case, can be written

xi
t115F~xi

t![~12Ng! f ~xi
t!1g(

j ; i
f ~xj

t !, ~2!

whereg is the coupling strength,N is the number of neigh-
bors in the chosen coupling range, and the sum is over th
neighbors.

Following @7#, a CML conserving exactly the continuou
local field can easily be constructed as

xi
t115F~xi

t!2
1

N (
j ; i

@F~xj
t !2xj

t #, ~3!

where the last term corresponds to the extra Laplacian in
Cahn-Hilliard equation. Conservation of the continuous fie
x is obvious. On the other hand, strictly speaking, the d
crete fields5sgn(x) is not exactly conserved and fluctuat
slightly, because the last term in Eq.~3! may change the sign
of sites situated in domain walls.

The synchronous mode of update prevents excessive~i.e.,
other than lattice-derivated! anisotropy. The above structur
ensures that ‘‘true’’ zero-temperature regimes are observe
the local map possesses two disjoint attractors. Changing
nature of these attractors~fixed points, limit cycles, chaotic
sets!, one can study competition between phases of differ
natures.

B. An example

We now present results obtained on a particular case
the models defined above. More comprehensive results
be reported elsewhere@11#. For simplicity reasons, we agai
choose the map given by Eq.~1!. For ‘‘extra smoothness,’’
the Moore neighborhood on the square lattice (N58 neigh-
bors of equal weight! was used.

As in @3,4#, domain walls are strictly pinned for smallg.
For too strong coupling, on the other hand, antiferromagn
clike phases appear. There is, however, an intermed
range ofg values for which domain growth proceeds forev
between two weakly chaotic phases. The expectedz53 law
is then easily observed even at short times and in log-
scales@Fig. 2~a!#.

The above CMLs reveal their strongest advantage w
persistence scaling is considered. As already noticed,
show normal coarsening with true zero temperature. T
allows us to avoid studying block persistence scaling
somewhat tedious task. Figure 2~b! shows persistence deca
for different reference timest0. Nice scaling is easily ob-
served. This constitutes, to our knowledge, the first cle
evidence of algebraic decay of persistence in a tw
dimensional conserved order-parameter system. Our re
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give an exponentu.0.25(2), i.e., a value larger than tha
observed for the nonconserved order parameter case~for
which u.0.20– 0.22@9,12#!.

The above CMLs constitute an excellent base for a r
able study of persistence scaling in conserved ord
parameter systems. Ongoing work is probing the degre

FIG. 2. Phase ordering and persistence scaling in a Oono-
style CML. Lattice of size 81922 with periodic boundary condi-
tions. ~a! ln(L) vs ln(t); inset: local exponent~The slightly smaller
values of 1/z recorded can be shown to be due to space discre
tion effects.! ~b! ln(p) vs ln(t) for various initial timest0. From
bottom to top:t050, 10, 102, and 103.
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universality of the persistence exponent measured ab
alongside a similar study for the nonconserved ord
parameter case for which this issue is still unresolved@9,12#.

IV. CONCLUSION

In this Comment, we showed how APS were misled
their interpretation of simulation data and that their conc
sions about possible nontrivial values of the dynamical
ponentz in chaotic systems with conserved order parame
dynamics do not hold. To a large extent, these systems
be seen as too close to the Ising model with Kawasaki
namics, which is well known to be difficult to study numer
cally ~althoughz53 scaling is now well documented@13#!.

We introduced a class of CMLs that are devoid of all t
problems encountered in APS systems and that show no
scaling already at early times. Moreover, these systems
present nice scaling behavior for the persistence probabi
whereas similar investigations in APS systems are ridd
with problems. We showed unambiguously that tw
dimensional systems with conserved order-parameter dom
growth show an algebraic decay of persistence. Future w
will try to assess the universality of both the so-call
Fisher-Huse exponent and the persistence exponentu in such
systems.
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